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Midsurface meridional radius

| b Distance between center of the circular meridiarn and the axis of
‘ revolution
b E Young's modulus of elasticity

h Shell thickness

=

Number of circumferential waves in buckling pattern
Uniform external pressure
Midsurface meridional shell displacement

Midsurface circumferential shell displacement
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ABSTRACT

A series of eight plastic toroidal shell models of circular
cross section covering a wide geometric range were Jesigned,
built, and tested under uniform external pressure. The results
were compared to collapse pressure predictions of two analyses.
One analysis agreed with experimental collapse pressure to with-
in 10 percent for all but two of the models. The other analysis
agreed with half the models tested to within 10 percent but
seems to be too optimistic for certain geometries. Experimental
strains were recorded and photographs were taken of the models
undergoing deformation during testing. The test results and
analytical predictions indicated that complete tcroidal shells
under uniform external pressure appear to be inscnsitive to
imperfections.

ADMINISTRATIVE INFORMATION

The work described in this report was sponsored by the Naval Ship
Systems Command under Task Area S-F 35.422.303, Task 1956.

This report is based on a thesis investigation submitted to the
Faculty of the School of Engineering and Applied Science of the George
Washington University in partial satisfaction of the requirements for the

degree of Master of Science in Engineering.
INTRODUCTION

The lack of sufficient experimental verification of theory for the
toroidal shell under external pressure has precluded the serious con-
sideration of this configuration for use as pressure hulls and storage
tanks for undersea applications. This study is part of the effort to ex-
plore novel concepts for undersea pressure-resistant structures to achicve
increased structural efficiency.

In the field of buckling of thin shells, the toroidal shell has
received little attention compared to the cylinder, sphere, and cone.
Roiterl describes Machnig's paper on torus stability under uniform external

pressure as a significant first step in the solution of the torus buckling

IReferences are listed on page 52.




proolem. More rccently, Jordan2 ilas performed a stability analysis on a
torus under uniform pressure and axial loads. At about the same time,

Sobel and Flﬁggc3‘4 developed a stability analysis for the toroidal shell
under uniform external pressure and included test results of four models

in a very narrov range of geometries which were in good agreement (+10 per-
cent} with the analysis. Also, Bushnells’6 has developed a general analysis
for any shell of revolution which is applicable to the toroidal shell.

The primary objective of this investigation was the experimental
verification of analytical predictions of elastic buckling pressures for
toroidal shells under uniform external pressure. The experimental models
covered a wide range of geometries. Two analyses were used to give ana-
lytical predictions--the Sobel and Fliigge analysis and the Bushnell
analysis. In both analyses, a linear membrane prebuckling solution is used
(although the Bushnell analysis has the capability of a nonlinear pre-
buckling solution). 1In the analysis of Sobel and Flﬁgge, stability
cquations for a torus arc solved by Fourier series representations of the
displacement components developed during buckling to calculate buckling
pressure. Bushnell's analysis solves the buckling problem with an energy
method and the finite difference technique. Both analyses are described
in more detail in the appendix to this report. For the experimental models
of this study, buckling pressure calculations using Bushnell's analysis
were performed at the Naval Ship Research and Development Center (NSRDC)
using a computer program written by D. Bushnell. Calculations by the
analysis of Sobel and Fligge were performed by L.H. Schel with a computer
program at Lockheed Missiles and Space Company, Palo Alto, Culifornia. 1In
addition to the huckling pressure, the buckling mode was also determined
analytically for each experimental model. The mode prediction consists of
determining the number of circumferential (8-direction in Figure 1) waves
anrd whether deformations are symmetric or antimetric about meridional (¢-
direction) diameter A-A shown in Figure 1. Some examples of symmetric and
antimetric deformations are shown in Figure 2.

{n addition to the primary objective, there are two secondary ob-
jectives: the usc of mecasured strains and photographs to cxperimentally
determine the buckling modes, and the comparison of measured experimental

strains to calculated membrane strains.
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MODEL DESIGN

In order to ensure that the models would buckle elastically, it was
necessary that the buckling stresses be below the proportional limit of
the material. This required that the model material have a high ratio of
proportional limit to Young's modulus and was the prime consideration in
the selection of the material for the models. Other factors influencing
the material selection were cost and ease or fabrication,

The material selected was a plastic formed by the mixture of equal
paris by weight of Versamid 140 polyamide resin and Epon 828 resin. In
addition to satisfying the previously mentioned considerations, the NSRDC
shop personnel had experience in the techniques of mixing and casting the
material to obtain models tree of air bubbles and cracks.

The Young's modulus of the material was determined to be 314,000 psi
by the National Bureau of Standards from compression testing of one of the
material specimens formed at the same time the models were cast. The test
was conducted at a stres: rate of 100 psi per minute and a temperature of
70-75°F which were to be the conditions for the model tests. Tuckerman
optical strain gages were used to determine the strains. Young's modulus
was not determined individually for each model cast. However, the NSRDC
shop personnel had considerable experience in working with the plastic
material and it was felt that this experience, together with careful con-
trol of the fahbrication process, would insure negligible variation in the
Young's modulus among the castings.

Several specimens were compression tested at NSRDC to determine the
rffect of varying stress rates on Young's modulus, These tests measured
strain by a deflectometer which is a less accurate method than the
Tucserman gages. A variation of less than 1 percent was found in Young's
modulus in the range 60-320 psi/min. Figure 3 is a typical compressive
stress-strain curve for the model material obtained from the deflectometer
compressiun tests at NSRDC. A Poisson's ratio of 0.4 was assumed for this
material. This value was used in experiments by Hyman and Ilealey7’8 using
the same material and curing process as employed in this study.

The design of the experimental models was subject to certain con-
straints and requirements which will be described prior to presenting the

design procedure.
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The prime objective of this study is the comparison of analytical
predictions and experimental results over a wide range of geometries. The
model designs were based on Figure 4 which shows the relationship between
the elastic buckling coefficient, based on the analysis of Sobel and Flugge,
and the geometry. (This figure is from Reference 3.) Points were selected
on these curves as the experimental model geometries. Because of previous
experimental work by Sobel4 for small values of a/(a+b) (0.111 and 0.1356),
it was decided to emphasize higher values of this parameter in the model
designs. Although Figure 4 is for v = 0.3 and the model material had a
v = 0.4, good designs were obtained using this figure, and buckling
pressures were calculated for v = 0.4 for comparison with experimental
results.

The size of the models was influenced by the diameter of the test
chamber and the minimum shell thickness obtainable. Most of the models
were to be tested inside a pressure chamber whos= inside diameter was
20 in. In order to provide sufficient clearance between the model and
the chamber wall, the largest model dimension was limited to 19 in. NSRDC
personnel experienced in casting and machining the plastic used in the
models indicated the minimum thickness obtainable was 0.04 in.; herce, the
minimum shell wall thickness was limited to this value in the mode: designs.
The combination of these two constraints restricted the models to a maxi-
mum a/h ratio of 100 and also made the a/h value obtainable for a model
dependent on its value of a/a+b,

The process selected for constructing the models consisted of
casting half-sections of each model to the final outside model dimensions
in an aluminum mold and then machining the final inside dimensions. The
models were completed by gluing the halves together at their equators.
Considering this procedure, it was economical to select model designs so
that two or three models had the same outside dimensions, allowing them to
be made from a single mold. The design procedure will now be described.

Several initial values of a/a+b were selected in the range 0.1 to
0.45 in order to cbtain models at intervals over the entire range
depicted in Figure 4. These initial values were approximately 0.1, 0.2,
0.3, 0.4, and 0.45. Ten models ﬁere designed, and in view of Sobel's

previous experimental work at the low end of the a/a+b range, it was
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TABLE 1

Toroid Model Designs

Model | a/a+b | ash C;g?;“Q
1 loan | 25| A
2 0.220 50 | not cast
3 | o0.21831 25 8
4 | o0.300 | 50 c
5 | o0.298 | 25 c
6 | 0.421 | 100 0
7 | 0.420 | s0 0
8 c.417 25 | not cast
9 | 0.455 |100 E
10 |o.453 | 50




decided to emphasize the middle and upper end of the range. For each value
of a/a+b, various combinations of a and b were tried until values were
found such that 2(a+b) was close to, but did not exceed 19 in. In order
to use Figure 4, the models needed a/h values of 25, 50, or 100, as shown
in the figure. Hence, for each a/a+b value, shell thicknesses were calcu-
lated for a/h values of 25, 50, and 100. It was found that certain com-
binations of a/a+b and a/h resulted in a shell thickness less than the
minimum achievable value of 0.04 inch. For this reason, designs for a/h

= 100 and a/a+b < 0.4, and designs for a/h = 50 and a/a+b < 0.2 could not
be built with the technique selected for model construction. At this
point, the designs were almost in their final form.

It was decided to alter the designs slightly so that more than one
model could be cast in a single mold, since models with similar a/a+b
ratios had almost the same overall diameter (2{a+b)+h) which would be the
mold diameter. This was accomplished by altering the shell thickness and
the dimension a to achieve the same value for (2(a+b)+h) for all models
with similar a/a+b values. The dimension b and thz a/h value were kept
constant. The values used for (2(a+b)+h) and b were those of the highest
a/h design within the group having similar a/a+b values. As a result of
these dimensional alterations, models with different a/h values originally
having the same a/a+b values now had a/a+b values differing slightly from
each other, and the designs were dimensioned so that the ten models could
be cast in five molds. Table 1 shows the design values of a/a+b and a/h
and indicates which models were cast in the same mold. Models 2 and 8 were
not built because of time and cost limitations.

in order to ensure that the models would fail by elastic buckling,
the stresses at the buckling pressure were calculated using the following
equations from page 33 of Reference 9 which are based on the linear mem-
brane theory of toroidal shells,




Elastic buckling pressures were obtained from Figure 4 for each design. A
design value of 325,000 psi was used for Young's modulus. Calculations
showed that all stresses calculated were well below the yield strength of
the material, and no stresses were higher than 1600 psi. Since Figure 4
is for v = 0.3, and the models have v = 0.4, the stresses were recalculated
when buckling pressures for v = 0.4 were computed. Again it was found that
the stresses were well within the elastic range of the material, and no
stresses exceeded 1900 psi.

It is known that the use of linear membrane theory results in dis-
continuous displacemen*s in the crown region (¢ = 0 deg and 180 deg) of

the 1:oroid.10'12 These discontinuities are eliminated in thin shell toroids

by using a nonlinear membrane theorylo’12

in which the determination of
the forces is based on the deformed shape rather than, as in the linear
theory, on the undeformed shape. Also, while the strains are assumed to
be small, their derivatives are allowed to become large in the nonlinear
membrane theory. Comparisons have been madc between stresses calculated
by linear and nonlinear membrane theories for thin toroids.m'12 with the
result that the differences are of minor importance for design purposes.
This is because the largest difference (on the order of 20 percent)10
occurs in the circumferential stress; however, the circumferential stress
is always lower than the meridional stress in a toroid, and the meridional

stresses are almost identical to each other for the two theories.
MODEL FABRICATION

It was decided to build the toroid models by casting half sections
to the final outside dimensions in female molds and machining the final
inside dimensions. A machiped joint was used in both halves of the model
to aid in joining the halves together. Other fabrication techniques for
constructing shells of revolution were available, including explosive
forming metal shell halves and welding the halves t.ngether,l3 electroform-
ing the complete shell using a wax mandril,14 vacuum forming plastic on a
male mold,15 and pouring molten plastic over a male mold and curing to a
hard shell.7’8




Several factors entered into the decision of which fabrication
technique to use. The use of plastic eliminated explosive forming from
éonsideration. Vacuum forming would have required the use of a different
type of plastic and would have been a more costly process. Pouring molten
plastic over a male mold would have been satisfactory for the thinner shell
designs, but to make the thicker toroids, it would have been necessary to
build up layers of the plastic which could have resulted in nonuniform
material properties. The chosen technique was thought to be a reliable
one which would produce models of uniformly high quality and constant
material properties.

Figure 5 shows the apparatus used in casting the toroidal half
sections. The casting surfaces of the aluminum molds were machined to a
32 finish so that the outer surface of the casting would be smooth and not
require further machining. The cavity radius and other critical mold
dimensions were held to a tolerance of +0.001 in. The wood cores were
used to avoid casting a large cross section and to reduce the amount of
machining required. A large cross section could have caused cracking in
the casting while curing for the following reason: The chemical reaction
of the plastic during curing is one that develops heat. In a large cross
section, the surface near the aluminum mold would be cooler than the
interior of the casting, and this uneven temperature distributicn could
cause cracking in the hardened casting. The use of wood cores avoided
this problem by keeping the casting cross section to a minimum (approxi-
mately 1/4 in. thick).

The fabrication sequence for a typical toroidal shell began with
heating the aluminum mold to 110°F in an oven. The Versamid 140 and Shell
Epon 828, not yet mixed, were heated to 125°F., The wood core was wrapped
with cellophane tape to provide a nonporous smooth surface and then coated
with a silicone grcase as a parting agent (Figure 6a). This core
preparation was the result of much trial and error directed at solving the
problem of the core being difficult and at times impossible to remove
from the cured casting. This was due to the wood grain providing a ho.d
for the casting to resist the removal of the core. Another more expsensive
solution to the problem would have been to machine an aluminum core. The

mold was removed from the oven and brushed with polyvinal alcohol as a
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parting agent (Figure 6b). The core was then placed in the mold and
supported by spacer rings (Figure 6c). The rings and top edge of the core
were'beveled to allow easy removal after the castiing hardened. Clamps
were used to prevent movement of the core after 1t was centered in the
mold. Figure S shows the complete setup in detail.

The Versamid 140 and Shell Epon 828 were removed from the 125°F
oven, carefully weighed and mixed to make a mixture of equal weights of
Versamid and Shell Epon., This mixture was poured into the mold from the
outer edge, and flowed around the core and up to the inner edge, pushing
the air ahead of it (Figure 6d). The mixture was poured until it was just
below the top edge of the inner and outer spacer rings. The casting was
cured by allowing the mold to remain undisturbed for 24 hours at room
temperature (70-80°F). After the casting had cured, the core and spacer
rings were removed from the mold., The casting was not removed from the
mold at this time, but was inspected for any flaws or air pockets.

The mold and casting were then mounted on a lathe for machining of
the inner surface to the final radius and forming the joint on the inner
and outer edges (F'gure 6e). After the machining, the finished half shell
was removed from the mold. It was found that gently pulling the shell
away from the mold at the outer edge and directing an air stream into the
space helped to free the shell from the mold. Figure 6f shows the two
halves of a typical toroidal model ready to be joined. The machined joint
on the inner and outer edges can be seen in this figure. The completed
halves were stored in a constant temperature rocm until assembly to pre-
vent deformation due to day-night temperature fluctuations. The constant
temperature room was maintained at 70-7%°F and 40 percent humidity.

Prior to joining the halves of each model, thickness measurements
were taken using an Ames dial gage. Table 2 presents the measured thick-
ness for each model and a comparison with the design thickness desired.

It is seen that the average measured thicknesses differ from the design
values by 7.5 percent or less. The measured variation indicates the
degree of nonuniformity in the measured thickness of each model and is the
difference between the maximum measured thickness and the minimum measuved
thickness expressed as a percentage of the minimum measurement. For

several models this variation is greater than 10 percent.

11




Figure 6 - Steps in Model Construction

Figure 6a - Wood Core Prepared Figure 6b - Applying Parting Agent
for Casting to Mold

Figure 6¢ - Placing Wood Core

Figure 6d - Pouring Liquid Plastic
in Mold

into Mold
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Figure 6e - Machining Inner Surface Figure 6f - Shell Halves Prior
of Shell to Joining

Figure 6g - Three Completed Toroid Models
(Models I, 5, 10)

13




TABLE 2
Shell Thicknesses

. : veasuied
H ariation
Hodel ig. ii. Tﬁ- Tnax Tmin
Tmin.
percent
‘ 1 0.040 | 0.043 | 1.075 7.3
f 3 0.079 | 0.080 | 1.013 25.0
4 0.055 | 0.0575] 1.045 5.4
5 0.109 | 0.116 | 1.064 15.0
6 0.040 | 0.043 | 1.075 20.0
7 0.080 | 0.082 | 1.025 6.3
9 0.040 | 0.038 | 0.9%0 14.0
10 0.080 | 0.084 { 1.050 6.3
Notes
Subscript O indicates dosign value.
Subscript A indicates average measured
value.

14




The model halves were joined together using the same mixture of
Versamid and Shell Epon as was used in casting the shells. Figure 6g shows
three models representative of the range of geometries inciuded in this
study. A 1/16-in. diameter hole was made at the outer equator of each
model, and a hollow plastic vent tube was attached to the shell cver the
hole. On Models 1, 3, 5, 7, and 10 this tuhe was attached with an epoxy
cement using a small plastic collar for support, After the test of
Mcdel 1, many cracks were visible in the shell near the attachment, indi-
cating that the cementing of the collar and tube to the shell with the
brittle epoxy restricted the shell deformation in this area. The thinner
the shell and the greater the curvature, the more significant would be
this effect. Cracks in this area were not observed on previous tests of
Models 3, 5, 7, and 10. On subsequent Models 4, 6, and 9, the vent tube
was attached with Coast Pro-Seal 890 which is a flexible cement. This
provided a good attachment and offered no restriction to shell deformation.
The hollow plastic vent tube served a dual role: it was the means of
supporting the model free and clear during the test, and it was an air
passageway from the interior of the model. As a check on the circularity
of the complete toroid model, measurements were taken o’ the outer-edge
diameter (D) and the meridional cross section diameter (d) and are presented
in Table 3. The measured variation gives the deviation from a perfect
circle based on maximum and minimum measured dimensions. These measure-
ments indicute negligible variation in D and a small, but perhaps sig-
nificant variation in d. Table 4 compares the design values of geometric
parameters a and b with the values based on average measured diameters and

thicknesses. It is seen that agreement is very good.
TESTING

Two testing schemes were used in the experimental program. Models
1, 3, 5, 7, and 10 were tested using the apparatus diagrammed in Figure 7.
In this scheme, the load was applied by pressurizing a tank containing the
model. The interior of the model was vented to the atmosphere through a
hollow plastic tube from which the model was supported in the tank. This
scheme did not permit visual observation of the model during testing. A

second scheme was used for Models 4, 6, and 9 which did allow the model to
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TABLE 3

Circularity Measurements

-1 d
Measured Measured
Variation Variation
Mode Dy On OpaxUnin 9% 9p | YwaxGnin
2 in. in 0. in. in. d _,.l
min min
percent percent 0
I 18.040 ! 18.078 0.04 2.040 y 2.049 0.9
k) 18.224 | 18.182 0.09 4.040 | 4.028 0.9
[} 18.387 | 18.353 0.03 5.555 | 5.541 3.1
5 18.387 [ 18.303 0.09 5.555 | 5.852 1.4
6 19.040 | 18.963 0.07 8.040 | 8.020 2.4
7 19.040 | 18.995 0.2 8.040 | 8.100 1.7
9 17.640 | 17.606 0 8.040 | 8.050 0.9
10 17.640 | 17.547 0.06 8.040 | 8.070 1.2
Subscript O indicates design value,
Subscript A indicates average measured value.

TABLE 4
Geometric Model Parameters a and b
a a 4 b b By
vodel | 0 b ! %0 | e | e | P
in, in.
1 1.000 | 1.003 {1.003 | 8.000 [ 7.965 | 0.99¢
k) 1.981 | 1.979 | 0,999 | 7,092 | 7.072 | (1.997
L] 2.750 [ 2.742 | 0.997 | 6.416 | 6.406 | 0.998
5 2.723 [ 2.719 10,999 | 6.416 | 6.276 | 0.994
6 4.000 | 3,988 | 0,997 | 5.500 | 5.172 | 0.995
7 3,980 | 4.009 | 1,007 | 5.500 | 5.44A | 0,991
9 4.000 | 4.006 | 1.002 | 4.000 | 4.778 | 0,995
10 3.980 | 3.993 | 1.003 | 4.800 | 4.739 | 0.987
Subscript 0 indicates design value.
Subscript A indicates value calculated fr~* average
measured diameter and thickness,
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figure 7 - Schematic Diagram of Test Apparatus for Models 1, 3, 5, 7, 10

16




be observed and photographed during testing. The apparatus for this test
method is diagrammed in Figure 8. This was a vacuum type test in which

the air inside the model was partially removed so that atmospheric pressure
provided the load.

Electrical resistance strain gages were applied to the outer surface
of most of the models to compare experimental strains with calculated mem-
brane strains, to determine the buckling mode, and to see if the huckling
strains were elastic. The degree to which each model was strain gaged was
influenced by the testing scheme used and the results of preceding tests
in the experimental program. The gages were applied so as to measure
strain in the circumferential and meridional directions. Models 1, 3, 5,
and 10 were the most extensively gaged models, Model 7 was not gaged for
reasons which will be discussed later, and Models 4, 6, and 9 were ob-
served visually and photographed ard carried only one gage. The gages
were Bud Metalfilm C40-111D-R2VC two-element rosette gages, temperature-
compensated for plastic, with elements oriented perpendicular to each
other.

It was recognized that gage heating due to the applied gage voltage
during the test could cause the plastic to soften and produce a drift in
the gage reading. To investigate this possibility, a gage was applied to
a piece of the model material having the thickness of the thinnest toroidal
shell. Gage voltages from 0.5 to 2.5 volts were applied in increments,
each increment being held for 45 min. It was found that a voltage of
1 volt or less produced negligible drift; hence, during the model tests,

a gage voltage of 1 volt was used. Lower voltages would have decreased
the sensitivity of the recording instruments.

Models 10, 7, 3, 5, and 1 were tested in that order using the
scheme depicted in Figure 7. The locations of the strain gages on these
models are shown in Figures 9, 10, 11, and 12. The number of gages used
per model increased with each succeeding model test in order to more fully
determine the model behavior. The gage pattern used on Model 1 provided a
very good determination of the model behavior. Modecl 7 was not gaged for
the following reason: After Model 10 was tested, it was apparent that the
desired stress rate of 90 psi/min. could not be achieved due to the time

required to read the gages at each pressure increment. It was then decided
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to omit gages fiom Model 7 and test at the 90 psi/min. stress rate to
detect any effect of the altered stress rate on the model behavior. The

90 psi/min. rate was chosen because it had been used by Hyman and HealeyT’8
in experiments on models of the same material as used in this study.

The test apparatus shown in Figure 7 will now be described. The
model was suspended in the pressure t-ak from the vent tube and did not
touch the tank walls or bottom. The tube was attached to a pressure
fitting which passed through the top of the tank, The venct tube was open
to the atmosphere, subjecting the interior of the model to atmospheric
pressure during the test, The pressure fitting was also used to pass the
strain gage wires out of the pressure tank to the recording equipment
which consisted of a 48-channel strain plotter and a 2-channel strip chart
recorder. At cach pressure increment during the test, the strain plotter
recorded the strain measured by each gage element. This resulted in a
point plot of strain versus pressure for each gage element. The strip
chart recorder continuously monitored one strain gage element and the
pressure applied to the model. One channel was connected to a strain gage
element and provided a continuous plot of strain versus time. This plot
detected any creep taking place at that gage location. The second channel
recorded the pressure on the model versus time. A pressure transducer con-
nected to an opening in the tank top provided the pressure reading. All
of the recording instruments were carefully calibrated before each test.
The pressure in the tank was regulated by the control valve, and the bleed
valve was used to relieve the tank - . .ssure at the end of a test phase.

Madels 1, 5, and 10 were each subjected to three pressure runs, the
third ending in failure of the model. The first run loaded the modei to
half its theoretical buckling pressure. The second run applied load until
nonlinearity was observed in the strain plots. The third run applied load
until the model collapsed. At the end of each run the pressure on the
model was completely relieved. The first run served as a checkout of the
pressurizing system and the recording system. The second run detected
any permanent set in the strain gages when the pressure was relieved. This
would indicate yielding of the model material. Model 3 was subjected to
just two pressure runs. The model failed immediately after the start of

nonlinear strain behavior during the second run. Model 7 had no gages and
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was tested in one pressure run. Each pressure run consisted of small
increments of pressure after each of which strain gage readings were
recorded on the strain plotter. The strip chart recorder provided a con-
tinuous record of pressure and strain. Model failure was detected by a
sudden drop in pressure.

Models 9, 6, and 4 were tested last and in that ovrder using the test
apparatus diagrammed in Figure 8. The model was suspended from an over-
head bracket by flexible plastic tubing connected te the vent tube at onu
end and to a coupling at the other end. From this coupling, plastic
tubing was connected to the control valve and the manometer. The control
valve, vacuum reservoir, and vacuum pump were also connected by flexible
plastic tubing. A large sheet of plexiglas was placed in front of the
model to protect observers from shell fragments at failure. One strain
gage rosette was applied to cach model at the locaticn 6 = 270°, ¢ = 0°
During the tests of Models 6 and 9, only one gage element could be recorded
because of equipment limitaticns at the time of the test; however, both
elements were recorded on Model 4. The 2-channel strip chart recorder was
used to record the strains versus time. Pressure was not recorded con-
tinuously because the available transducer would not work satisfactorily
with a vacuum. Pressure readings were hand marked on the strain record.

It was found that for photographic purposes, additional light would
be needed on the models duiing the tests. This was provided by two 100-
watt light bulbs placed on opposing sides of the models. In order to
reduce glare, the additional light was placed on the same side of the
plexiglas as the model, and the photographic angle was perpendicular to
the plexiglas sheet. The camera was mounted on a tripod approximately
20 in. in front of the plexiglas, ana the model was 2 in. behind it. The
camera was a Polaroid black-and-white with automatic light exposure con-
trol and was manually operated during each test. The tests of Models 4 and
6 utilized mirrors to allow both crown areas (¢ = 0%, ¢ = 180°) to be
visible in the same photograph. These were the arcas of greatest defor-
mation.

Model 9 was tested in two pressure runs; Models 4 and 6 were each
tested in three runs. Each run consisted of stepwise increases in the

vacuum regulated by the control valve and indicated on the mercury
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manometer. The low buckling pressures and the taking of photographs
resulted in slower stress rates than were planned.

Table 5 gives the stress rate for each model tested. The most
highly stressed location on the models, meridional stress at ¢ = anar,

was used in determining the stress rate.
DISCUSSION OF RESULTS

Table 6 gives the comparison between the experimental collapse
pressvres and the analytical predictions of elastic buckling nressures for
each mcdel tested, Average measured values of geometric parameters were
used in calculating the Sobel and Fligge and the Bushnell analytical pre-
dictions. Any variation between test and theory of less than 10 percent
must be considered unavoidable due to the possibility of random experi-
mental error. Hence, only variations greater than 10 percent will be con-
sidered significant in comparison with analyses. It is seen that with the
exception of Models 1 and 9, the experimental collapse pressures agree with
the Bushnell analytical predictions to within +10 percent. Agreement to
within +10 percent is also obtained with the Sobel and Fllgge analytical
predicticns for Models 5, 6, 7, and 10, It is noted that with the ex-
ception of Model 6, the Sobel and Flugge analysis predicts higher buckling
pressures than the Bushnell analysis. This seems to indicate that the
Bushnell analysis is the more conservative of the two. The fact that
analyses are in signific.nt disagreement with the experimental results for
Models 1 and 9 will be discussed lrter. The agreement of results for
Models 3 and 4 with the Bushnell analysis but not with the Sobel and
Fliigge analysis is of uncertain importance. It could indicate a geometric
range where the Sohel and Fliigge analytical predictions become too opti-
mistic. However, more than two models are needed to make a definite
determination. The factor of model stress rate does nct appear to have
any significant effect on modei behavior for rates of 90 psi/min. or less.
The experimental stress rates shown in Table 5 did not appear to influence
the degiree of agreement between test results and analytical predictions.

The test results will now be used to indicate the effect of im-

perfections on toroidal shells. Hutchinson'® has determined that toroidal
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shell segments subject to uniform external pressure are for the most part
imperfection-sensitive. However, no work could be found in the literature
on complete toroids. The Southwell method17 was used to calculate a
collapse pressure for each model using the experimental strain data. The
purpose of this method is to give the pressure at which an imperfection-
free (perfect) model will fall. The validity of the Southwell calculation
depends on the type of equilibrium exhibited by a perfect model at the
buckling pressure. The type of equilibrium indicates the post-buckling
behavior. Figure 13 depicts the neutral, stable, and unstable equiiibrium
states. The solid lines indicate the post-buckling behavior of perfect
models. The dashed lines indicate the behavior of imperfect models.

Since no model can be constructed completely free of imperfections, all
experimental models fall into the imperfect model category. As shown in
Figurc 13a, for a neutral equilibrium state, the load on an imperfect model
asymptotically approaches the buckling pressure from below as deflections
increase. Collapse occurs at or slightly below the theoretical pressure.
Near the buckling pressure, deflections can increase with no increase in
load. If the model can sustain large deflections, and the perfect shell
is of a stable equilibrium state, Figure 13b, then the pressure can be
increased above the theoretical buckling pressure before the model col-
lapses. 1If a perfect shell is of the neutral or stable equilibrium state,
then the imperfect model is said to be insensitive to imperfections be-
cause imperfections do not cause a significant reduction in the collapse
pressure compared to the theoretical buckling pressure for a perfect shell.
An imperfect model is sensitive to imperfections if the perfect shell is
of an unstable equilibrium state as shown in Figure 13c. The effect of
imperfections is to cause the model to fail at a pressure significantly
less than the theoretical buckiing pressure. This type of behavior is
characterized by the complete spherical shell.

The Southwell method is valid only for the neutral cquilibrium
state, According to Roorda,18 the Southwell method overestimates the
buchling pressure for a stahle cquilibrium state and underestimates it for
an unstable state. The fact that most of the model results in Table 6 are
in good agreement with one or hoth analyses indicates a neutral equilibrium

state and, hence, insensitivity to imperfections. The close agreement
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between test pressures and Southwell pressures for Models 1, 3, 4, 5, and
6 also indicates insensitivity to imperfections. Imperfection sensitivity
would be indicated if the Southwell pressures were significant.y above the
test pressures. None of the Sout'well pressures calculated were signifi-
cantly above the test pressures.

The results of the test of Model 1 can be interpreted in several
ways. On examination of the model after failure, it was observed that the
area of failure was a 90-deg segment in the circumferential direction
which included the point of attachment of the vent tube. Much local
cracking was vvident in the shell near the vent tube, The remainder of
the model was intact, The model could have undergone a premature failure
caused by a too rigid attachment of the vent tube to the shell. This
could have created a loczl hard spot, preventing the shell from deforming
at this location during the test. This, in combination with the high
meridional curvature, might have caused cracking at low piessures. How-
ever, it is surprising to see the agreement of the Southwell pressure with
the test result, This seems to indicate that the model collapsed at the
buckling pressure of a perfect model, indicating overly optimistic

analytical predictions. Sobels’4 has tested models with the same b/a ratio

as Model 1, but with higher a/h values (70-80) and obtained good agreement
(+#10 percent) with analytical predictions. Possibly for b/a = 8 and

a/h = 25, the analysis gives results which are too high. Another inter-
pretation of the results is that the geometry has unstable eguilibrium and
the Southwell calculation underestimates the buckling pressure. The model
would then be sensitive to impcerfections and fail at a pressure signifi-
cantly less than the analytical prediction, and the Southwell pressure
would be too low. In this interpretation, the analytical predictions
would be correct, Another test of the same model geometry without a hard
spot is needed to resalve the question.

The cxperimental collapse pressure of Model 9 is significantly
greater than the analytical predictions and the Southwell pressure. This
is a strong indication that the model failed in the post-buckling region,
was of the stable equilibrium type, and was not imperfection-sensitive.
Since the Southwell method overestimates for stable equilibrium, the

perfect model duckling pressurc is actually closer to the analytical




predictions than the calculated Southwell pressure. This interpretation
of the test results for Model 9 is in agreement with the behavior observed
and photographed as shown in Figure 14, The first visible deflection
occurred at z pressure of 65 percent of collapse load. Succeeding incre-
ments of load produced greater deflections until failure occurred.

Models 4 and 6 were also visually observed and photographed.

Figure 15 shows deflections of Model 6. The first visible deflection
occurred at 85 percent of collapse load., However, 1a view of the good
agreement of experimental collapse pressure with analytical predictions
and with the Scuthwzll pressure, these deflections must be interpreted as
large prebuckling deformations caused by imperfections. It appears that
the neutral equilibrium state applies to Model 6 and, hence, the model was
insensitive to imperfections. The deflections of Model 4 are shown in
Figure 16. The first visible deflections occurred at the collapse pressure
and increased with no increase in pressure. Considering this and the
close agrecment of the test result with one of the analytical predictions
anc with th: Southwell pressure, a neutral equilibrium state for the
perfect shell is indicated. As with Model 6, this indicates insensitivity
to imperfecticns.

The results of Model 10 are subject to two interpretations. The
experimental collapse pressure is in good agreement with the analytical
predictions but is significantly greater than the Southwell pressure.
While the agreement of test and analysis indicates ncutral equilibrium,
the lower Southwell pressure points to stable equilibrium. In either
event, insensitivity to imperfections is indicated.

Table 7 compares the analytical buckling mode prediction and the
experimental mode determination using measured strains snd photographs.
With the exception of Model 1, both analyses predict the same mode for
each model. The circumferential wave number (n) for each nodel was
determined either by studying the photographs taken during the test or by
plotting the total circunferential strain near the collapse pressure of
each of the crown gages and noting the resulting pattern. By comparing
meridional strains on either side of the 90-270° meridional diameter, a
determination of symmetric or antimetric detormation was nade. Using the

photographs, this was done by noting the deformations of opposiag crown
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Figure 14 - Deformation of Model 9 During Test
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Figure 15 - Deformation of Mcdel 6 During Test

Figure 15b - 1.13 PSI, B5 Percent Collapse
Load, First Visible Deformation

Figure 15¢ - 1,28 PSI, 96 Percent
Collapse load
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Figure 15d - 1.33 PSI, 1C0 Percent
Collapse Load, Just Before Col-
lapse

Figure 15¢ - After Failure




Figure 16 - Deformation of Model 4 During Test

Figure I16b - 4.03 PS1, 100 Percent Collapse
Load, First Visible Deformation

Figure 16¢ - 4,03 PSI, 100 Percent
. Collapse Load
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Figure l6d - 4.03 PSI, 100 Percent

Experimental and Analytical Buckling Modes

A

TABLE 7

Collupse Load, Just Before Failure

Figure lée - After Failure

Mode Sobe;n:?ssglugge Bushnell Analysis Experiment Ei:e5$;§:?;?$g
1 n=¢ Symmetric n=0 Antimetric n=2 Antimetric Strain gage
3 n=0 Antimetric n=0 Antimetric n=? Antimetric Strain gage
4 n=0 Antimetric n=0 Antimetric n=0 or 2 Photograph
Antimetric
5 n=0 Antimetric n=0 Antimetric n=? Antimetric Strain gage
6 n=0 Antimetric n=0 Antimetric n=0 Antimetric Photograph
3 7 n=0 Antimetric n=0 Antimetric -- --
9 n=0 Antimetric n=0 Antimetric n=0 Antimetric Photograph
10 n=0 Antimetric r=0 Antimetric n=? Antimetric Strain gage
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areas. An inward deformation on one-crown and an outward deformation on
the opposite crown indicated an antimetric mode.

The experimental collupse mode of Models 4, 6, and 9 cain be seen
in the photographs shown in Figures 14, 15, and 16. There is some uncer-
tainty in the wave number for Model 4. Figures 17, 18, 19, and 20 show
the circumferential strain pattern for the crown areas of Models 1, 3, 5,
and 10. The n=2 pattern of Model 1 is very evident. Models 3, 5, and 10
had too few gages to positively identify the buckling mode. No mode
determination could be made for Model 7 since it was neither photographed
nor strain gaged. 1n all models observed and phr.ographed, the crown area
appeared to be the area of greatest deformation.

Figures 21-27 present load-strain plots of experimental strains for
each model tested. For models having many gages, the plots are for lo-
cations of maximum strain. Strains based on linear membrane theory are
also shown for comparison. It is seen that the experimental strains
exhibit nonlinearity in all models, which is indicative of bending. This
is probably due te imperfections. For Model 1, this is also due to cir-
cumferential bending caused by the n=2 buckling mode. For most models,
linear membrane strains agree significantly better with the exjperimental
meridional strains than with the circumferential strains. This result is
of particular interest in connection with the previously discussed fact
that linear and nonlinear membrane theories produce almost identical
meridional stresses, but differ significantly in the circumferential
stresses. Even though there is disagreement between linear membrane theory
and experimental strains, the good agreement betwcen experimental buckling
pressures and analytical predictions seems to justify the use of linear
membrane theory in the buckiing analysis. -

That each model failed elastically is assured by the fact that all
measured strains were elastic at collapse. The maximum strain measured at
collapse was -0.013 in. ver in., the meridional strain at & = 270°,
¢ = 180° on Model 5. Comparing this with Figure 3, it is seen that this
strain is elastic. On most models, the strain at collapse was less than
0.01 in, per in, With most models, when nonlinear strains were evident
during a pressure run, the load was removed to detect any permanent set in

the strains. None was ever detected.
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Those strains which were continuously recorded along with pressure
during testing increased at an accelerated rate near collapse pressures.
In some cases, the strain increased with no increase in load, This would
seent indicative of arcep, but camnot be because strains are elastic. This
is probably the result of the perfect shell having a neutral equilibrium
state, causing imperfections to produce large deflections as tiie load-

detflection curve asymptotically approaches the buckling pressure.
CONCLUSIONS

l. lhe Bushnell analysis agreed with test results with the exception of
Model 9, which exhibited post-buckling st:ength, and Model 1, whose
results are questionable.

¥

Ihe Sobel and Flﬁggc analysis agreed with half the models tested. Tt

tended to be teo optimistic at b/a ratios of 2.33 and 3.58.

3. 0f the two unalyses, the Bushnell analvsis appears to be the more con-

sorviative,

4. It was possible te experimentally determine the buckling mode of models
where sufficient data was obtained from strain gages er from photographs.

Strain gages are the bLetter indicator of mode.

5. The experimental strains exhibited a high degree of nonlinearity,

probably Jdue to imperfections.

6. Tor most models tested, at loads up to half the collapse loud, theo-
retical stvains based on linear membrane theory were in good agreement
with experimental strains for the meridional directior, but not for the

circumferential direction,

7. Test results indicate that complete toroidal shells under uniform

external pressure are insensitive to impertections.
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APPEND1X
DESCRIPTICN QF ANALYSES

ANALYS1S OF SOREL AND FLUGGE

The analysis of Sobel and Flligge for the prediction of elastic buck-
Licy pressures of toroids under uniform external pressure is described in
Jetas!oin References 3 and 4. A brief description of the analysis will be
SIS LeTe.
A lincar membrane analysis is used for the prebuckling salution,
oY ‘hling pressures are calculated from stability equations for a
t whizh are obtained by specialization of the stability equations of
ral shell of revolution. The stability equations for the toroid are
ing Feurier series representations of the displacerent components
during buckling. Buckling modes which are symmetric and anti-
it line A-A in Figure 1 are considerad,
The following assumptions are made for this analysis.

1} The shell material is isotropic, homogeneous and obeys Hooke's
law {linearly elastic).

2) The shell thickness is constant.

3) The shell thickness is small in comparison with the radii of
curvature of the middle surface.

4) Normals to the middle surface before deformation remain normal
atter deformation with no change in length.

5) The normal stresses acting on surfaces parallel to the middle
surface are small compared to other stresses and may be neglected
in the stress-strain relations.

&) All incremental quantities are infinitesimai.

7) The incremental strains are small in comparison with the incxe-
mental rotations.

8) The basic state may be approximated by a membrane state of
stress,

Equilibrium equations are developed for a general shell of revelu-
tion vased on the Jeformed state of the shell. This is accomplished with
a linear stability analysis wherc.n the effects of prebuckline rotations
are neglected. The equations are a system of partial differential
cquations with variable coefficients. For the case of axially symmetric

loading (uniform external pressure), the coefficients in the equilibrium
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equations are independent of the circumferential coordinate (8). Hence,
separation of variables is possible which reduces the equations to ordinary
differential equations. To accomplish this, the displacements, force and
moment resultants, strains, and rotations in the equilibrium equations are
represented with Fourier series expressions in the circumferential (&)

direction. The expressions for the displacements are (Figure 1)

o

u = 2 un(¢) cosnd (la)

n=g¢g

v = 2 vn(¢) sinng (1b)
n=1

W o= E wn(rb) cosng (lc)
n=o

The equilibrium expressions are in terms of displacements, forces,
moments, strains, and rotations. However, using the elastic law (relations
between stress and displacement), strain-displacement relations, and
curvature-displacement relations, the equilibrium equations ar. »btained
in terms of displacements only. These equilibrium equations are the
stability equations for a general shell of revolution under axiaily
symmetric loading.

The stability equations arc then specialized for the toreid geometry
under uniform externzl pressure. The linear membranc selution from
Reference 9 is used for the prebuckling stresses. The resulting stability
equations for the toroid consist of three linear homogencous ordinary
differcntial equations with variable coefficients, The unknowns in these
equations are the displacement components un(¢), vn(¢), and wn(¢). Next,
the displacement components are represented by Fourier series in the

meridional (¢} direction.

o [as]

un(¢) = 2 Um sinm¢ + 2 ﬁm cosm (2a)

m=1 m=0
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o

v_(4) =2vm cosmp + 2 \7m sinmg (2b)

m=o0 =]

oy @
| w (¢) = 2 W cosm¢ + 2 W sinme (2¢)
[ m=o m=1

The series with Fourier coefficients Um’ Vm’ Nm represent a buckling mode

which is symmeiric about line A-A in Figure 1. The coefficients ﬁm, Vm,

Wm represent a buckling mode which is 2atimetric about this line.
Using equations (2) together with some trigenometric identities,
the stability equations are reduced to an infinite system of linear homo-

gencous algebraic equations of the form

2 Am sinm¢$ + 2 Am cosm¢ = 0 (3a)
m=1 m=0

E Bm cosm¢g + E Bm sinm¢ = O (3b)
m=0 m=1

- 7_1' -~

2 Cm cosmd + 2 Cm sinm¢ = 0 (3c)
m=¢ m=1

where
Am = Am(Um,\fm,hm) R Am = Am(Um,Vm,\\m)
=B (U,v W) , B =B (U,Vv ,W)
m m m m" m m m m m" m
= C (U v W), C = C U,V LK)
m m m m" m m m-m m m

Since sinme and cosmy are linearly independent, in order for equations

(3) to be satistied, we must have

e SR




A =B =C =20
m m m

A =B =C =0
m m m

Hence, the Fourier coefficients Um,Vm,Wm may be determined from a set of
equations which do not contain Um,Vm,Wm. This means that the toroid under
uniform external pressure can buckle into a mode that is either symmetric
or antimetric about line A-A in Figure 1, and these modes can be investi-
gated separately. The symmetric mode is referred to as Mode A and the
antimetric mode as Mode B.

The solution of the stability equation will be ou* 1 for Mode A
(the symmetric mode). The solution for Mode B is similar. The displace-
ment components for Mode A are represented as

®

un(¢) o2 E Um sinme¢ (4a)

m=1

vn(¢) = 2 Vm cosmé (4b)
m=o

«

wn(¢] = 2 Wm cOSm¢ {4¢)

m=90

Inserting these equations into the stability equation in its differential
form results in a set of linear homogeneous algebraic ejuations similar to

equations (3).

«

E Al sinm¢ = 0 (5a)
m=1
E_ B cosmg = 0 (5b)
m=0
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S_wcm cosmg = 0 (5¢)

m=0

Since sinm$ and cosm$ are linearly independent, we must have

A, =0 (6a)
Bm =0 (6b)
Cm =0 (6¢)

By letting m=1,2,3,... in Equetions (6), we obtain an infinite system of

algebruic equations having the Fourier coefficients Um’vm’wm as the
unknowns .

Using matrix notation, Equations (6) are written as
[R) lv} - w[S] |v| - Io} (7)

where [R] and [S] are square coefficient matrices and

U

m

HEN

m

W

m
and

0 §lra
l-

ml"o
= m‘o—-

The objective of the stability analysis is to determine the lowest
value of A (the eigenvalue) for which Equation (7) admits a nontrivial
solution (the eigenvector). The components of the eigenvector arc the

Fourier coefficients Um,vm,wm. The displacement functions

—
un(¢) = 2 Um sinmg
m=1
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a0

Vn(¢) = E Vm cosmg

m=0

[e4]

2 hm cosmg

m=o0

wo ()

corresponding to the eigenvalue X are called the eigenfunctions or mode
shapes in the meridional direction.

To obtain a solution for Mode A to a particular problem of known
geometry, an initial value of n (number of circumferential waves) is
selected. By assigning a value to m, the infinite system of algebraic
equations (6) is reduced to a finite set of equations.

A matrix iteration technique is used with the algebraic equations
in matrix form, Equation (7), to determine from Rayleigh's quotient the
lowest eigenvalue 3 of the finite set of equations. Next, the size of the
set of equations is increased by increasing the value of m, and the lowest
eigenvalue X of the new set of equations is determined as before. This
procedure is repeated until the successive values of X have converged to a
value Xcr' Then by varying n and repeating the iterative process with m,
we obtain a set of these values Acr’ one for each n considered. The so-
lution (Acr) for Mode A is given by the minimum value of Xcr in this set,

The critical buckling pressure for Mode A is

AL, (Eh
Per © Acr(a ) (&)

This solution proccdure was programmed by Sobel and Flligge for the IBM 7094

computer.
The solution for the antimetric mode, Mode B, is obtained in a

manner similar to that for Mode A. For Mode B, the displacement components

u (¢) = z Gm cosm¢ (9a)
m=0

are represented as
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v (9) = 2 \7m sinmé (9b)

=1

o0

w (9) = 2 ﬁm sinm (9¢)

m=1

The solution procedure is the same as for Mode A. In matrix notation, the

stability esquation 1is

(R] [v] - wl§] {\7 - ‘o] (10)

where [R] and [5] are square coefficient matrices and

ot

115,

W
m

<l

The c¢ritical buckling pressure for Mode B, Pgr, is obtained in the manner
described for the symmetric mode (Mode A).

The buckling pressure for the toroid under consideration is the
lesser of the two buckling pressures Pir and PEr. The toroid will buckle
in the meridional mode (syvmmetric or antimetric) and in the circumferential

mode (n) associated with the buckling pressure.

ANALYSIS OF BUSHNELL

The analysis of Bushnell for the prediction of elastic buckling
pressures and natural frequencies of vibration of shells under uniform
external pressure is described in detail in Reference 6. A brief
description of the analysis will be given here.

The complete analysis is for anv shell of revolution with or with-
out stiffeners; however, this description is oriented toward the unstiffened
toroid and includes only those parts of the analysis pertinent to this

geometry.
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The analysis utilizes an energy method and the finite difference
technique to solve the buckling problem. Prebuckling quantities are
determined from linear membrane analysis. There is a nonlinear prebuckling
analysis available as part of the analysis, but it was not used for the
toroid. The assumptions governing the analysis are:

1) The material is elastic.

2) Normals to the middle surface before deformation remain normal
after deformation with no change in length.

3) The structure and loads are axisymmetric, and the prebuckling
or prestress deformations are axisymmetric.

4) The prebuckling deflections, while considered finite, are
moderate. That is, the square of the meridional rotation can
be neglected compared to unity.

The energy method used in the analysis is based on the definition of the
Hamiltonian formed from the sum of the potential energy and the kinetic

energy of the deformed state of the shell

_ A B
Hq = US - TS + UC + UC (11)
where
is number of circumferential waves,
is shell strain energy,

Ts is shell kinetic energy (this term is zero for the buckling
problem},

and UC are constraint conditions at the A and B ends of the
toroid meridian (see Figure 28).

The Hamiltonian is reduced to an algebraic form by expressing the
strain energy and constraint conditions in terms of buckling displacements
and their derivatives. The derivatives with respect to the meridional
coordinate are simulated by two and three point finite difference formulas.
Derivatives with respect to the circumferential coordinate are eliminated
because u=un sinng, v=v cosng, Waw sinné. The resulting algebraic

form is

i = fq) [i¥)) + (x,] [q| (12)
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where

[q] is vector matrix of dependent variables including displace-
ments and Lagrange multipliers corresponding to the constraint
conditions,

o)
[Kl] is stiffness matrix of the undeformed and unstressed shell,
[K,] is matrix of prestress terms contributing to the stiffness
matrix.
[K]] and [K2] arc obtained from expressions for strain energy and con-
straint conditions as will be described.

The integral form of the shell strain energy is written as

U, =% [[SJ H + fu] [N) {m] « [d] [P] M] FdE (13)

meridional
shell
length

whore
[s] is vector matrix of buckling stresses and moment resultants,

I

[NOJ is matrix of prestresses,

is vector matrix of rotation components,

[d] is vector matrix of displacement components,

[P} is matrix of pressure loading.

5
'l, 'A], |d] are matrices in terms of geometric variables and displace-

ments obtained by utilizing Novoshilov's strain-displacement ard curvature-
Jisplacement relations.

In order to use the finite difference technigue, nodes or mesh
points are locuted along the shell merdian, and the llamiltonian is written
at vach mesh poinc,  llence, the integral expression for strain energy can
be written in finite difference notation as a summation over the mesh
points along the meridian.  The finite difference representation of the
displacements and their derivatives are

[ui + “i-l} (v. + v

i i-]

= —_ Vo e—e— W

W,
‘ 9 1

18




du_ M- uy dv _ vy - Vi) dw _ (M4 B 1)
ds h ds h ds 2h
- 2
%y _ (Wioq - 25 vy )
ds2 h2

and the strain energy expression takes the form

N
o, =3 D ry asylagl 12l {ay) (19)
i=1

where
. . . th .
r, is radius at i~ mesh point,
as; is weighting factor,

N is number of mesh points.

The constraint conditions Uﬁ and UE are the equations of displace-
ment and rotation compatability at the ends of the sheil meridian. These

equations take the form

()
u
*
A,B | .A,B A,B _A,B _A,B [A,B'l A,B ABlJ v
UC = [Al [} }\2 [} )‘3 ] A4 K | Ql + XOQZ < . } (15)
W
where LX)
AA’B AA’B AA’B AA’B are the Lagrange multipliers associated with

172 *»7"3 4
constraints on displacements and rotations at the ends of the meridian
* * *

u, v, w, x are displacements and rotation at the ends of the

meridian

X is a prebuckling rotation,
Ql’ is a transformation matrix,

Qz‘ is a matrix representing the effect of prebuckling meridional
rotation on the transformation,

is a matrix governing which displacement conditions are satis-
fied at the ends of the meridian, depending on an element
being either 0 or 1.

49




The stiffness matrices [Kl] and [Kz] in the Hamiltonian are written
using the expressions for strain energy and constraint conditions.
The buckling pressure is the eigenvalue of the pressure that causes

The eigenvector is the mode shape. The extremum is

“n to he an extremum.
tormed by minimizing “n with respect to all of the [q] components. This

generates a set of linear homogeneous algebraic equations

[0+ 1x,1] [q\ =0 (16)
The lowest eigenvalue satisfying
(15,0 + 1x1] = 0 (17)

gives the buckling pressure, and the corresponding eigenvector gives the

mode shape. To solve for the eigenvalue, the analysis uses a technique

. . . . - 19
of successive approximation similar to that used by Cohen,”” to converge

on a solution,

te analvsis was performed using a computer program written by D.

Bushnell and currently in use at NSRDC. In using this analysis to calcu-

late the buekling pressures for the toroid models tested, the following
boundary conditions were used for buckling displacements and rotations at
the ends of the meridian labeled A and B (Figure 28):
Symmetric Mnde
A end of meridian B end of meridian
n o
u* | v W* x{rotation) u* | v* W* x{rotation)
0|0 0 frece 0 0 0 free 0
1 |0 free | O 0 0 free | free 0
2,3 10 free | frec 0 0 free | free 0
Antimetric Mode
A end of meridian B end of meridian
n
u* v w* v (rotation) i Vel owe x{rotation)
0|V 0 0 free free | O 0 free
110 U 0 free free | O 0 free
2,5 | free | O 0 free free | O 0 free
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